/**************************************************************************//** * @file cmsis_gcc.h * @brief CMSIS compiler GCC header file * @version V5.4.1 * @date 27. May 2021 ******************************************************************************/ /* * Copyright (c) 2009-2021 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __CMSIS_GCC_H #define __CMSIS_GCC_H #include "stdint.h" /* ignore some GCC warnings */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-conversion" #pragma GCC diagnostic ignored "-Wconversion" #pragma GCC diagnostic ignored "-Wunused-parameter" /* Fallback for __has_builtin */ #ifndef __has_builtin #define __has_builtin(x) (0) #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((__noreturn__)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK //__attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __attribute__((packed, aligned(1))) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" struct __attribute__((packed)) T_UINT32 { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif #ifndef __COMPILER_BARRIER #define __COMPILER_BARRIER() __ASM volatile("":::"memory") #endif // /* ######################### Startup and Lowlevel Init ######################## */ // #ifndef __PROGRAM_START // /** // \brief Initializes data and bss sections // \details This default implementations initialized all data and additional bss // sections relying on .copy.table and .zero.table specified properly // in the used linker script. // */ // __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void) // { // extern void _start(void) __NO_RETURN; // typedef struct { // uint32_t const* src; // uint32_t* dest; // uint32_t wlen; // } __copy_table_t; // typedef struct { // uint32_t* dest; // uint32_t wlen; // } __zero_table_t; // extern const __copy_table_t __copy_table_start__; // extern const __copy_table_t __copy_table_end__; // extern const __zero_table_t __zero_table_start__; // extern const __zero_table_t __zero_table_end__; // for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) { // for(uint32_t i=0u; iwlen; ++i) { // pTable->dest[i] = pTable->src[i]; // } // } // for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) { // for(uint32_t i=0u; iwlen; ++i) { // pTable->dest[i] = 0u; // } // } // _start(); // } // #define __PROGRAM_START __cmsis_start // #endif // #ifndef __INITIAL_SP // #define __INITIAL_SP __StackTop // #endif // #ifndef __STACK_LIMIT // #define __STACK_LIMIT __StackLimit // #endif // #ifndef __VECTOR_TABLE // #define __VECTOR_TABLE __Vectors // #endif // #ifndef __VECTOR_TABLE_ATTRIBUTE // #define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section(".vectors"))) // #endif // #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) // #ifndef __STACK_SEAL // #define __STACK_SEAL __StackSeal // #endif // #ifndef __TZ_STACK_SEAL_SIZE // #define __TZ_STACK_SEAL_SIZE 8U // #endif // #ifndef __TZ_STACK_SEAL_VALUE // #define __TZ_STACK_SEAL_VALUE 0xFEF5EDA5FEF5EDA5ULL // #endif // __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) { // *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE; // } // #endif // /* ########################## Core Instruction Access ######################### */ // /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface // Access to dedicated instructions // @{ // */ // /* Define macros for porting to both thumb1 and thumb2. // * For thumb1, use low register (r0-r7), specified by constraint "l" // * Otherwise, use general registers, specified by constraint "r" */ // #if defined (__thumb__) && !defined (__thumb2__) // #define __CMSIS_GCC_OUT_REG(r) "=l" (r) // #define __CMSIS_GCC_RW_REG(r) "+l" (r) // #define __CMSIS_GCC_USE_REG(r) "l" (r) // #else // #define __CMSIS_GCC_OUT_REG(r) "=r" (r) // #define __CMSIS_GCC_RW_REG(r) "+r" (r) // #define __CMSIS_GCC_USE_REG(r) "r" (r) // #endif // /** // \brief No Operation // \details No Operation does nothing. This instruction can be used for code alignment purposes. // */ // #define __NOP() __ASM volatile ("nop") // /** // \brief Wait For Interrupt // \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. // */ // #define __WFI() __ASM volatile ("wfi":::"memory") // /** // \brief Wait For Event // \details Wait For Event is a hint instruction that permits the processor to enter // a low-power state until one of a number of events occurs. // */ // #define __WFE() __ASM volatile ("wfe":::"memory") // /** // \brief Send Event // \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. // */ // #define __SEV() __ASM volatile ("sev") // /** // \brief Instruction Synchronization Barrier // \details Instruction Synchronization Barrier flushes the pipeline in the processor, // so that all instructions following the ISB are fetched from cache or memory, // after the instruction has been completed. // */ // __STATIC_FORCEINLINE void __ISB(void) // { // __ASM volatile ("isb 0xF":::"memory"); // } // /** // \brief Data Synchronization Barrier // \details Acts as a special kind of Data Memory Barrier. // It completes when all explicit memory accesses before this instruction complete. // */ // __STATIC_FORCEINLINE void __DSB(void) // { // __ASM volatile ("dsb 0xF":::"memory"); // } // /** // \brief Data Memory Barrier // \details Ensures the apparent order of the explicit memory operations before // and after the instruction, without ensuring their completion. // */ // __STATIC_FORCEINLINE void __DMB(void) // { // __ASM volatile ("dmb 0xF":::"memory"); // } // /** // \brief Reverse byte order (32 bit) // \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. // \param [in] value Value to reverse // \return Reversed value // */ // __STATIC_FORCEINLINE uint32_t __REV(uint32_t value) // { // #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) // return __builtin_bswap32(value); // #else // uint32_t result; // __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); // return result; // #endif // } #if 0 /** \brief Reverse byte order (16 bit) \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. \param [in] value Value to reverse \return Reversed value */ __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value) { uint16_t a,b; uint32_t ret; a=value&0xFFFF; b=(value>>16)&0xFFFF; ret=a; ret=(ret<<16)&0xFFFF; ret+=b; return ret; } #endif // /** // \brief Reverse byte order (16 bit) // \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. // \param [in] value Value to reverse // \return Reversed value // */ // __STATIC_FORCEINLINE int16_t __REVSH(int16_t value) // { // #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) // return (int16_t)__builtin_bswap16(value); // #else // int16_t result; // __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); // return result; // #endif // } // /** // \brief Rotate Right in unsigned value (32 bit) // \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. // \param [in] op1 Value to rotate // \param [in] op2 Number of Bits to rotate // \return Rotated value // */ // __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) // { // op2 %= 32U; // if (op2 == 0U) // { // return op1; // } // return (op1 >> op2) | (op1 << (32U - op2)); // } // /** // \brief Breakpoint // \details Causes the processor to enter Debug state. // Debug tools can use this to investigate system state when the instruction at a particular address is reached. // \param [in] value is ignored by the processor. // If required, a debugger can use it to store additional information about the breakpoint. // */ // #define __BKPT(value) __ASM volatile ("bkpt "#value) // /** // \brief Reverse bit order of value // \details Reverses the bit order of the given value. // \param [in] value Value to reverse // \return Reversed value // */ // __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value) // { // uint32_t result; // #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) // __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) ); // #else // uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */ // result = value; /* r will be reversed bits of v; first get LSB of v */ // for (value >>= 1U; value != 0U; value >>= 1U) // { // result <<= 1U; // result |= value & 1U; // s--; // } // result <<= s; /* shift when v's highest bits are zero */ // #endif // return result; // } // /** // \brief Count leading zeros // \details Counts the number of leading zeros of a data value. // \param [in] value Value to count the leading zeros // \return number of leading zeros in value // */ // __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value) // { // /* Even though __builtin_clz produces a CLZ instruction on ARM, formally // __builtin_clz(0) is undefined behaviour, so handle this case specially. // This guarantees ARM-compatible results if happening to compile on a non-ARM // target, and ensures the compiler doesn't decide to activate any // optimisations using the logic "value was passed to __builtin_clz, so it // is non-zero". // ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a // single CLZ instruction. // */ // if (value == 0U) // { // return 32U; // } // return __builtin_clz(value); // } // #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ // (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) // /** // \brief LDR Exclusive (8 bit) // \details Executes a exclusive LDR instruction for 8 bit value. // \param [in] ptr Pointer to data // \return value of type uint8_t at (*ptr) // */ // __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr) // { // uint32_t result; // #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) // __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); // #else // /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not // accepted by assembler. So has to use following less efficient pattern. // */ // __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); // #endif // return ((uint8_t) result); /* Add explicit type cast here */ // } // /** // \brief LDR Exclusive (16 bit) // \details Executes a exclusive LDR instruction for 16 bit values. // \param [in] ptr Pointer to data // \return value of type uint16_t at (*ptr) // */ // __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr) // { // uint32_t result; // #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) // __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); // #else // /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not // accepted by assembler. So has to use following less efficient pattern. // */ // __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); // #endif // return ((uint16_t) result); /* Add explicit type cast here */ // } // /** // \brief LDR Exclusive (32 bit) // \details Executes a exclusive LDR instruction for 32 bit values. // \param [in] ptr Pointer to data // \return value of type uint32_t at (*ptr) // */ // __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr) // { // uint32_t result; // __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); // return(result); // } // /** // \brief STR Exclusive (8 bit) // \details Executes a exclusive STR instruction for 8 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // \return 0 Function succeeded // \return 1 Function failed // */ // __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) // { // uint32_t result; // __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); // return(result); // } // /** // \brief STR Exclusive (16 bit) // \details Executes a exclusive STR instruction for 16 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // \return 0 Function succeeded // \return 1 Function failed // */ // __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) // { // uint32_t result; // __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); // return(result); // } // /** // \brief STR Exclusive (32 bit) // \details Executes a exclusive STR instruction for 32 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // \return 0 Function succeeded // \return 1 Function failed // */ // __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) // { // uint32_t result; // __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); // return(result); // } // /** // \brief Remove the exclusive lock // \details Removes the exclusive lock which is created by LDREX. // */ // __STATIC_FORCEINLINE void __CLREX(void) // { // __ASM volatile ("clrex" ::: "memory"); // } // #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ // (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ // #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) // /** // \brief Signed Saturate // \details Saturates a signed value. // \param [in] ARG1 Value to be saturated // \param [in] ARG2 Bit position to saturate to (1..32) // \return Saturated value // */ // #define __SSAT(ARG1, ARG2) \ // __extension__ \ // ({ \ // int32_t __RES, __ARG1 = (ARG1); \ // __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ // __RES; \ // }) // /** // \brief Unsigned Saturate // \details Saturates an unsigned value. // \param [in] ARG1 Value to be saturated // \param [in] ARG2 Bit position to saturate to (0..31) // \return Saturated value // */ // #define __USAT(ARG1, ARG2) \ // __extension__ \ // ({ \ // uint32_t __RES, __ARG1 = (ARG1); \ // __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ // __RES; \ // }) // /** // \brief Rotate Right with Extend (32 bit) // \details Moves each bit of a bitstring right by one bit. // The carry input is shifted in at the left end of the bitstring. // \param [in] value Value to rotate // \return Rotated value // */ // __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) // { // uint32_t result; // __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); // return(result); // } // /** // \brief LDRT Unprivileged (8 bit) // \details Executes a Unprivileged LDRT instruction for 8 bit value. // \param [in] ptr Pointer to data // \return value of type uint8_t at (*ptr) // */ // __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) // { // uint32_t result; // #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) // __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); // #else // /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not // accepted by assembler. So has to use following less efficient pattern. // */ // __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" ); // #endif // return ((uint8_t) result); /* Add explicit type cast here */ // } // /** // \brief LDRT Unprivileged (16 bit) // \details Executes a Unprivileged LDRT instruction for 16 bit values. // \param [in] ptr Pointer to data // \return value of type uint16_t at (*ptr) // */ // __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) // { // uint32_t result; // #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) // __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); // #else // /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not // accepted by assembler. So has to use following less efficient pattern. // */ // __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" ); // #endif // return ((uint16_t) result); /* Add explicit type cast here */ // } // /** // \brief LDRT Unprivileged (32 bit) // \details Executes a Unprivileged LDRT instruction for 32 bit values. // \param [in] ptr Pointer to data // \return value of type uint32_t at (*ptr) // */ // __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) // { // uint32_t result; // __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); // return(result); // } // /** // \brief STRT Unprivileged (8 bit) // \details Executes a Unprivileged STRT instruction for 8 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // */ // __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) // { // __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); // } // /** // \brief STRT Unprivileged (16 bit) // \details Executes a Unprivileged STRT instruction for 16 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // */ // __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) // { // __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); // } // /** // \brief STRT Unprivileged (32 bit) // \details Executes a Unprivileged STRT instruction for 32 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // */ // __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) // { // __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); // } // #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ // /** // \brief Signed Saturate // \details Saturates a signed value. // \param [in] value Value to be saturated // \param [in] sat Bit position to saturate to (1..32) // \return Saturated value // */ // __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) // { // if ((sat >= 1U) && (sat <= 32U)) // { // const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); // const int32_t min = -1 - max ; // if (val > max) // { // return max; // } // else if (val < min) // { // return min; // } // } // return val; // } // /** // \brief Unsigned Saturate // \details Saturates an unsigned value. // \param [in] value Value to be saturated // \param [in] sat Bit position to saturate to (0..31) // \return Saturated value // */ // __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) // { // if (sat <= 31U) // { // const uint32_t max = ((1U << sat) - 1U); // if (val > (int32_t)max) // { // return max; // } // else if (val < 0) // { // return 0U; // } // } // return (uint32_t)val; // } // #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ // #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ // (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) // /** // \brief Load-Acquire (8 bit) // \details Executes a LDAB instruction for 8 bit value. // \param [in] ptr Pointer to data // \return value of type uint8_t at (*ptr) // */ // __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) // { // uint32_t result; // __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); // return ((uint8_t) result); // } // /** // \brief Load-Acquire (16 bit) // \details Executes a LDAH instruction for 16 bit values. // \param [in] ptr Pointer to data // \return value of type uint16_t at (*ptr) // */ // __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) // { // uint32_t result; // __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); // return ((uint16_t) result); // } // /** // \brief Load-Acquire (32 bit) // \details Executes a LDA instruction for 32 bit values. // \param [in] ptr Pointer to data // \return value of type uint32_t at (*ptr) // */ // __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) // { // uint32_t result; // __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); // return(result); // } // /** // \brief Store-Release (8 bit) // \details Executes a STLB instruction for 8 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // */ // __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) // { // __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); // } // /** // \brief Store-Release (16 bit) // \details Executes a STLH instruction for 16 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // */ // __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) // { // __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); // } // /** // \brief Store-Release (32 bit) // \details Executes a STL instruction for 32 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // */ // __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) // { // __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); // } // /** // \brief Load-Acquire Exclusive (8 bit) // \details Executes a LDAB exclusive instruction for 8 bit value. // \param [in] ptr Pointer to data // \return value of type uint8_t at (*ptr) // */ // __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr) // { // uint32_t result; // __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); // return ((uint8_t) result); // } // /** // \brief Load-Acquire Exclusive (16 bit) // \details Executes a LDAH exclusive instruction for 16 bit values. // \param [in] ptr Pointer to data // \return value of type uint16_t at (*ptr) // */ // __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr) // { // uint32_t result; // __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); // return ((uint16_t) result); // } // /** // \brief Load-Acquire Exclusive (32 bit) // \details Executes a LDA exclusive instruction for 32 bit values. // \param [in] ptr Pointer to data // \return value of type uint32_t at (*ptr) // */ // __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr) // { // uint32_t result; // __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); // return(result); // } // /** // \brief Store-Release Exclusive (8 bit) // \details Executes a STLB exclusive instruction for 8 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // \return 0 Function succeeded // \return 1 Function failed // */ // __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr) // { // uint32_t result; // __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); // return(result); // } // /** // \brief Store-Release Exclusive (16 bit) // \details Executes a STLH exclusive instruction for 16 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // \return 0 Function succeeded // \return 1 Function failed // */ // __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr) // { // uint32_t result; // __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); // return(result); // } // /** // \brief Store-Release Exclusive (32 bit) // \details Executes a STL exclusive instruction for 32 bit values. // \param [in] value Value to store // \param [in] ptr Pointer to location // \return 0 Function succeeded // \return 1 Function failed // */ // __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr) // { // uint32_t result; // __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); // return(result); // } // #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ // (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ // /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ // /* ########################### Core Function Access ########################### */ // /** \ingroup CMSIS_Core_FunctionInterface // \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions // @{ // */ // /** // \brief Enable IRQ Interrupts // \details Enables IRQ interrupts by clearing special-purpose register PRIMASK. // Can only be executed in Privileged modes. // */ // __STATIC_FORCEINLINE void __enable_irq(void) // { // __ASM volatile ("cpsie i" : : : "memory"); // } /** \brief Disable IRQ Interrupts \details Disables IRQ interrupts by setting special-purpose register PRIMASK. Can only be executed in Privileged modes. */ __STATIC_FORCEINLINE void __disable_irq(void) { } // /** // \brief Get Control Register // \details Returns the content of the Control Register. // \return Control Register value // */ // __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) // { // uint32_t result; // __ASM volatile ("MRS %0, control" : "=r" (result) ); // return(result); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Control Register (non-secure) // \details Returns the content of the non-secure Control Register when in secure mode. // \return non-secure Control Register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); // return(result); // } // #endif // /** // \brief Set Control Register // \details Writes the given value to the Control Register. // \param [in] control Control Register value to set // */ // __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) // { // __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); // __ISB(); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Control Register (non-secure) // \details Writes the given value to the non-secure Control Register when in secure state. // \param [in] control Control Register value to set // */ // __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) // { // __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); // __ISB(); // } // #endif // /** // \brief Get IPSR Register // \details Returns the content of the IPSR Register. // \return IPSR Register value // */ // __STATIC_FORCEINLINE uint32_t __get_IPSR(void) // { // uint32_t result; // __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); // return(result); // } // /** // \brief Get APSR Register // \details Returns the content of the APSR Register. // \return APSR Register value // */ // __STATIC_FORCEINLINE uint32_t __get_APSR(void) // { // uint32_t result; // __ASM volatile ("MRS %0, apsr" : "=r" (result) ); // return(result); // } // /** // \brief Get xPSR Register // \details Returns the content of the xPSR Register. // \return xPSR Register value // */ // __STATIC_FORCEINLINE uint32_t __get_xPSR(void) // { // uint32_t result; // __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); // return(result); // } // /** // \brief Get Process Stack Pointer // \details Returns the current value of the Process Stack Pointer (PSP). // \return PSP Register value // */ // __STATIC_FORCEINLINE uint32_t __get_PSP(void) // { // uint32_t result; // __ASM volatile ("MRS %0, psp" : "=r" (result) ); // return(result); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Process Stack Pointer (non-secure) // \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. // \return PSP Register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); // return(result); // } // #endif // /** // \brief Set Process Stack Pointer // \details Assigns the given value to the Process Stack Pointer (PSP). // \param [in] topOfProcStack Process Stack Pointer value to set // */ // __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) // { // __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Process Stack Pointer (non-secure) // \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. // \param [in] topOfProcStack Process Stack Pointer value to set // */ // __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) // { // __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); // } // #endif // /** // \brief Get Main Stack Pointer // \details Returns the current value of the Main Stack Pointer (MSP). // \return MSP Register value // */ // __STATIC_FORCEINLINE uint32_t __get_MSP(void) // { // uint32_t result; // __ASM volatile ("MRS %0, msp" : "=r" (result) ); // return(result); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Main Stack Pointer (non-secure) // \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. // \return MSP Register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); // return(result); // } // #endif // /** // \brief Set Main Stack Pointer // \details Assigns the given value to the Main Stack Pointer (MSP). // \param [in] topOfMainStack Main Stack Pointer value to set // */ // __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) // { // __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Main Stack Pointer (non-secure) // \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. // \param [in] topOfMainStack Main Stack Pointer value to set // */ // __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) // { // __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); // } // #endif // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Stack Pointer (non-secure) // \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. // \return SP Register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); // return(result); // } // /** // \brief Set Stack Pointer (non-secure) // \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. // \param [in] topOfStack Stack Pointer value to set // */ // __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) // { // __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); // } // #endif /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) { return 0; } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Priority Mask (non-secure) // \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. // \return Priority Mask value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); // return(result); // } // #endif /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Priority Mask (non-secure) // \details Assigns the given value to the non-secure Priority Mask Register when in secure state. // \param [in] priMask Priority Mask // */ // __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) // { // __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); // } // #endif // #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) // /** // \brief Enable FIQ // \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK. // Can only be executed in Privileged modes. // */ // __STATIC_FORCEINLINE void __enable_fault_irq(void) // { // __ASM volatile ("cpsie f" : : : "memory"); // } // /** // \brief Disable FIQ // \details Disables FIQ interrupts by setting special-purpose register FAULTMASK. // Can only be executed in Privileged modes. // */ // __STATIC_FORCEINLINE void __disable_fault_irq(void) // { // __ASM volatile ("cpsid f" : : : "memory"); // } // /** // \brief Get Base Priority // \details Returns the current value of the Base Priority register. // \return Base Priority register value // */ // __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) // { // uint32_t result; // __ASM volatile ("MRS %0, basepri" : "=r" (result) ); // return(result); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Base Priority (non-secure) // \details Returns the current value of the non-secure Base Priority register when in secure state. // \return Base Priority register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); // return(result); // } // #endif // /** // \brief Set Base Priority // \details Assigns the given value to the Base Priority register. // \param [in] basePri Base Priority value to set // */ // __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) // { // __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Base Priority (non-secure) // \details Assigns the given value to the non-secure Base Priority register when in secure state. // \param [in] basePri Base Priority value to set // */ // __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) // { // __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); // } // #endif // /** // \brief Set Base Priority with condition // \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, // or the new value increases the BASEPRI priority level. // \param [in] basePri Base Priority value to set // */ // __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) // { // __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); // } // /** // \brief Get Fault Mask // \details Returns the current value of the Fault Mask register. // \return Fault Mask register value // */ // __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) // { // uint32_t result; // __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); // return(result); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Fault Mask (non-secure) // \details Returns the current value of the non-secure Fault Mask register when in secure state. // \return Fault Mask register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) // { // uint32_t result; // __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); // return(result); // } // #endif // /** // \brief Set Fault Mask // \details Assigns the given value to the Fault Mask register. // \param [in] faultMask Fault Mask value to set // */ // __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) // { // __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Fault Mask (non-secure) // \details Assigns the given value to the non-secure Fault Mask register when in secure state. // \param [in] faultMask Fault Mask value to set // */ // __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) // { // __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); // } // #endif // #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ // (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ // (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ // #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ // (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) // /** // \brief Get Process Stack Pointer Limit // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence zero is returned always in non-secure // mode. // \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). // \return PSPLIM Register value // */ // __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ // (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // // without main extensions, the non-secure PSPLIM is RAZ/WI // return 0U; // #else // uint32_t result; // __ASM volatile ("MRS %0, psplim" : "=r" (result) ); // return result; // #endif // } // #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Process Stack Pointer Limit (non-secure) // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence zero is returned always. // \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. // \return PSPLIM Register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // // without main extensions, the non-secure PSPLIM is RAZ/WI // return 0U; // #else // uint32_t result; // __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); // return result; // #endif // } // #endif // /** // \brief Set Process Stack Pointer Limit // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence the write is silently ignored in non-secure // mode. // \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). // \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set // */ // __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ // (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // // without main extensions, the non-secure PSPLIM is RAZ/WI // (void)ProcStackPtrLimit; // #else // __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); // #endif // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Process Stack Pointer (non-secure) // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence the write is silently ignored. // \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. // \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set // */ // __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // // without main extensions, the non-secure PSPLIM is RAZ/WI // (void)ProcStackPtrLimit; // #else // __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); // #endif // } // #endif // /** // \brief Get Main Stack Pointer Limit // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence zero is returned always in non-secure // mode. // \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). // \return MSPLIM Register value // */ // __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ // (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // // without main extensions, the non-secure MSPLIM is RAZ/WI // return 0U; // #else // uint32_t result; // __ASM volatile ("MRS %0, msplim" : "=r" (result) ); // return result; // #endif // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Get Main Stack Pointer Limit (non-secure) // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence zero is returned always. // \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. // \return MSPLIM Register value // */ // __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // // without main extensions, the non-secure MSPLIM is RAZ/WI // return 0U; // #else // uint32_t result; // __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); // return result; // #endif // } // #endif // /** // \brief Set Main Stack Pointer Limit // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence the write is silently ignored in non-secure // mode. // \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). // \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set // */ // __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ // (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // // without main extensions, the non-secure MSPLIM is RAZ/WI // (void)MainStackPtrLimit; // #else // __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); // #endif // } // #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) // /** // \brief Set Main Stack Pointer Limit (non-secure) // Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure // Stack Pointer Limit register hence the write is silently ignored. // \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. // \param [in] MainStackPtrLimit Main Stack Pointer value to set // */ // __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) // { // #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // // without main extensions, the non-secure MSPLIM is RAZ/WI // (void)MainStackPtrLimit; // #else // __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); // #endif // } // #endif // #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ // (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ // /** // \brief Get FPSCR // \details Returns the current value of the Floating Point Status/Control register. // \return Floating Point Status/Control register value // */ // __STATIC_FORCEINLINE uint32_t __get_FPSCR(void) // { // #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ // (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) // #if __has_builtin(__builtin_arm_get_fpscr) // // Re-enable using built-in when GCC has been fixed // // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) // /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ // return __builtin_arm_get_fpscr(); // #else // uint32_t result; // __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); // return(result); // #endif // #else // return(0U); // #endif // } // /** // \brief Set FPSCR // \details Assigns the given value to the Floating Point Status/Control register. // \param [in] fpscr Floating Point Status/Control value to set // */ // __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr) // { // #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ // (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) // #if __has_builtin(__builtin_arm_set_fpscr) // // Re-enable using built-in when GCC has been fixed // // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) // /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ // __builtin_arm_set_fpscr(fpscr); // #else // __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory"); // #endif // #else // (void)fpscr; // #endif // } // /*@} end of CMSIS_Core_RegAccFunctions */ // /* ################### Compiler specific Intrinsics ########################### */ // /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics // Access to dedicated SIMD instructions // @{ // */ // #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) // __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) // { // uint32_t result; // __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); // return(result); // } // #define __SSAT16(ARG1, ARG2) \ // __extension__ \ // ({ \ // int32_t __RES, __ARG1 = (ARG1); \ // __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ // __RES; \ // }) // #define __USAT16(ARG1, ARG2) \ // __extension__ \ // ({ \ // uint32_t __RES, __ARG1 = (ARG1); \ // __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \ // __RES; \ // }) // __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) // { // uint32_t result; // __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); // return(result); // } // __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) // { // uint32_t result; // __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SXTB16_RORn(uint32_t op1, uint32_t rotate) // { // uint32_t result; // if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) { // __ASM volatile ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) ); // } else { // result = __SXTB16(__ROR(op1, rotate)) ; // } // return result; // } // __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SXTAB16_RORn(uint32_t op1, uint32_t op2, uint32_t rotate) // { // uint32_t result; // if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) { // __ASM volatile ("sxtab16 %0, %1, %2, ROR %3" : "=r" (result) : "r" (op1) , "r" (op2) , "i" (rotate)); // } else { // result = __SXTAB16(op1, __ROR(op2, rotate)); // } // return result; // } // __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) // { // uint32_t result; // __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) // { // uint32_t result; // __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); // return(result); // } // __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) // { // union llreg_u{ // uint32_t w32[2]; // uint64_t w64; // } llr; // llr.w64 = acc; // #ifndef __ARMEB__ /* Little endian */ // __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); // #else /* Big endian */ // __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); // #endif // return(llr.w64); // } // __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) // { // union llreg_u{ // uint32_t w32[2]; // uint64_t w64; // } llr; // llr.w64 = acc; // #ifndef __ARMEB__ /* Little endian */ // __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); // #else /* Big endian */ // __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); // #endif // return(llr.w64); // } // __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) // { // uint32_t result; // __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); // return(result); // } // __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) // { // uint32_t result; // __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); // return(result); // } // __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) // { // union llreg_u{ // uint32_t w32[2]; // uint64_t w64; // } llr; // llr.w64 = acc; // #ifndef __ARMEB__ /* Little endian */ // __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); // #else /* Big endian */ // __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); // #endif // return(llr.w64); // } // __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) // { // union llreg_u{ // uint32_t w32[2]; // uint64_t w64; // } llr; // llr.w64 = acc; // #ifndef __ARMEB__ /* Little endian */ // __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); // #else /* Big endian */ // __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); // #endif // return(llr.w64); // } // __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2) // { // uint32_t result; // __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2) // { // int32_t result; // __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2) // { // int32_t result; // __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); // return(result); // } // #define __PKHBT(ARG1,ARG2,ARG3) \ // __extension__ \ // ({ \ // uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ // __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ // __RES; \ // }) // #define __PKHTB(ARG1,ARG2,ARG3) \ // __extension__ \ // ({ \ // uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ // if (ARG3 == 0) \ // __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ // else \ // __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ // __RES; \ // }) // __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) // { // int32_t result; // __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); // return(result); // } // #endif /* (__ARM_FEATURE_DSP == 1) */ // /*@} end of group CMSIS_SIMD_intrinsics */ #pragma GCC diagnostic pop #endif /* __CMSIS_GCC_H */