2025-04-10 17:31:33 +08:00

2216 lines
67 KiB
C

/**************************************************************************//**
* @file cmsis_gcc.h
* @brief CMSIS compiler GCC header file
* @version V5.4.1
* @date 27. May 2021
******************************************************************************/
/*
* Copyright (c) 2009-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_GCC_H
#define __CMSIS_GCC_H
#include "stdint.h"
/* ignore some GCC warnings */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wunused-parameter"
/* Fallback for __has_builtin */
#ifndef __has_builtin
#define __has_builtin(x) (0)
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((__noreturn__))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK //__attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed, aligned(1)))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
// /* ######################### Startup and Lowlevel Init ######################## */
// #ifndef __PROGRAM_START
// /**
// \brief Initializes data and bss sections
// \details This default implementations initialized all data and additional bss
// sections relying on .copy.table and .zero.table specified properly
// in the used linker script.
// */
// __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
// {
// extern void _start(void) __NO_RETURN;
// typedef struct {
// uint32_t const* src;
// uint32_t* dest;
// uint32_t wlen;
// } __copy_table_t;
// typedef struct {
// uint32_t* dest;
// uint32_t wlen;
// } __zero_table_t;
// extern const __copy_table_t __copy_table_start__;
// extern const __copy_table_t __copy_table_end__;
// extern const __zero_table_t __zero_table_start__;
// extern const __zero_table_t __zero_table_end__;
// for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
// for(uint32_t i=0u; i<pTable->wlen; ++i) {
// pTable->dest[i] = pTable->src[i];
// }
// }
// for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
// for(uint32_t i=0u; i<pTable->wlen; ++i) {
// pTable->dest[i] = 0u;
// }
// }
// _start();
// }
// #define __PROGRAM_START __cmsis_start
// #endif
// #ifndef __INITIAL_SP
// #define __INITIAL_SP __StackTop
// #endif
// #ifndef __STACK_LIMIT
// #define __STACK_LIMIT __StackLimit
// #endif
// #ifndef __VECTOR_TABLE
// #define __VECTOR_TABLE __Vectors
// #endif
// #ifndef __VECTOR_TABLE_ATTRIBUTE
// #define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section(".vectors")))
// #endif
// #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
// #ifndef __STACK_SEAL
// #define __STACK_SEAL __StackSeal
// #endif
// #ifndef __TZ_STACK_SEAL_SIZE
// #define __TZ_STACK_SEAL_SIZE 8U
// #endif
// #ifndef __TZ_STACK_SEAL_VALUE
// #define __TZ_STACK_SEAL_VALUE 0xFEF5EDA5FEF5EDA5ULL
// #endif
// __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
// *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
// }
// #endif
// /* ########################## Core Instruction Access ######################### */
// /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
// Access to dedicated instructions
// @{
// */
// /* Define macros for porting to both thumb1 and thumb2.
// * For thumb1, use low register (r0-r7), specified by constraint "l"
// * Otherwise, use general registers, specified by constraint "r" */
// #if defined (__thumb__) && !defined (__thumb2__)
// #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
// #define __CMSIS_GCC_RW_REG(r) "+l" (r)
// #define __CMSIS_GCC_USE_REG(r) "l" (r)
// #else
// #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
// #define __CMSIS_GCC_RW_REG(r) "+r" (r)
// #define __CMSIS_GCC_USE_REG(r) "r" (r)
// #endif
// /**
// \brief No Operation
// \details No Operation does nothing. This instruction can be used for code alignment purposes.
// */
// #define __NOP() __ASM volatile ("nop")
// /**
// \brief Wait For Interrupt
// \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
// */
// #define __WFI() __ASM volatile ("wfi":::"memory")
// /**
// \brief Wait For Event
// \details Wait For Event is a hint instruction that permits the processor to enter
// a low-power state until one of a number of events occurs.
// */
// #define __WFE() __ASM volatile ("wfe":::"memory")
// /**
// \brief Send Event
// \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
// */
// #define __SEV() __ASM volatile ("sev")
// /**
// \brief Instruction Synchronization Barrier
// \details Instruction Synchronization Barrier flushes the pipeline in the processor,
// so that all instructions following the ISB are fetched from cache or memory,
// after the instruction has been completed.
// */
// __STATIC_FORCEINLINE void __ISB(void)
// {
// __ASM volatile ("isb 0xF":::"memory");
// }
// /**
// \brief Data Synchronization Barrier
// \details Acts as a special kind of Data Memory Barrier.
// It completes when all explicit memory accesses before this instruction complete.
// */
// __STATIC_FORCEINLINE void __DSB(void)
// {
// __ASM volatile ("dsb 0xF":::"memory");
// }
// /**
// \brief Data Memory Barrier
// \details Ensures the apparent order of the explicit memory operations before
// and after the instruction, without ensuring their completion.
// */
// __STATIC_FORCEINLINE void __DMB(void)
// {
// __ASM volatile ("dmb 0xF":::"memory");
// }
// /**
// \brief Reverse byte order (32 bit)
// \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
// \param [in] value Value to reverse
// \return Reversed value
// */
// __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
// {
// #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
// return __builtin_bswap32(value);
// #else
// uint32_t result;
// __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
// return result;
// #endif
// }
#if 0
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
{
uint16_t a,b;
uint32_t ret;
a=value&0xFFFF;
b=(value>>16)&0xFFFF;
ret=a;
ret=(ret<<16)&0xFFFF;
ret+=b;
return ret;
}
#endif
// /**
// \brief Reverse byte order (16 bit)
// \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
// \param [in] value Value to reverse
// \return Reversed value
// */
// __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
// {
// #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
// return (int16_t)__builtin_bswap16(value);
// #else
// int16_t result;
// __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
// return result;
// #endif
// }
// /**
// \brief Rotate Right in unsigned value (32 bit)
// \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
// \param [in] op1 Value to rotate
// \param [in] op2 Number of Bits to rotate
// \return Rotated value
// */
// __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
// {
// op2 %= 32U;
// if (op2 == 0U)
// {
// return op1;
// }
// return (op1 >> op2) | (op1 << (32U - op2));
// }
// /**
// \brief Breakpoint
// \details Causes the processor to enter Debug state.
// Debug tools can use this to investigate system state when the instruction at a particular address is reached.
// \param [in] value is ignored by the processor.
// If required, a debugger can use it to store additional information about the breakpoint.
// */
// #define __BKPT(value) __ASM volatile ("bkpt "#value)
// /**
// \brief Reverse bit order of value
// \details Reverses the bit order of the given value.
// \param [in] value Value to reverse
// \return Reversed value
// */
// __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
// {
// uint32_t result;
// #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
// __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) );
// #else
// uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
// result = value; /* r will be reversed bits of v; first get LSB of v */
// for (value >>= 1U; value != 0U; value >>= 1U)
// {
// result <<= 1U;
// result |= value & 1U;
// s--;
// }
// result <<= s; /* shift when v's highest bits are zero */
// #endif
// return result;
// }
// /**
// \brief Count leading zeros
// \details Counts the number of leading zeros of a data value.
// \param [in] value Value to count the leading zeros
// \return number of leading zeros in value
// */
// __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
// {
// /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
// __builtin_clz(0) is undefined behaviour, so handle this case specially.
// This guarantees ARM-compatible results if happening to compile on a non-ARM
// target, and ensures the compiler doesn't decide to activate any
// optimisations using the logic "value was passed to __builtin_clz, so it
// is non-zero".
// ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
// single CLZ instruction.
// */
// if (value == 0U)
// {
// return 32U;
// }
// return __builtin_clz(value);
// }
// #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
// (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
// /**
// \brief LDR Exclusive (8 bit)
// \details Executes a exclusive LDR instruction for 8 bit value.
// \param [in] ptr Pointer to data
// \return value of type uint8_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
// {
// uint32_t result;
// #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
// __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
// #else
// /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
// accepted by assembler. So has to use following less efficient pattern.
// */
// __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
// #endif
// return ((uint8_t) result); /* Add explicit type cast here */
// }
// /**
// \brief LDR Exclusive (16 bit)
// \details Executes a exclusive LDR instruction for 16 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint16_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
// {
// uint32_t result;
// #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
// __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
// #else
// /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
// accepted by assembler. So has to use following less efficient pattern.
// */
// __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
// #endif
// return ((uint16_t) result); /* Add explicit type cast here */
// }
// /**
// \brief LDR Exclusive (32 bit)
// \details Executes a exclusive LDR instruction for 32 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint32_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
// {
// uint32_t result;
// __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
// return(result);
// }
// /**
// \brief STR Exclusive (8 bit)
// \details Executes a exclusive STR instruction for 8 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// \return 0 Function succeeded
// \return 1 Function failed
// */
// __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
// {
// uint32_t result;
// __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
// return(result);
// }
// /**
// \brief STR Exclusive (16 bit)
// \details Executes a exclusive STR instruction for 16 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// \return 0 Function succeeded
// \return 1 Function failed
// */
// __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
// {
// uint32_t result;
// __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
// return(result);
// }
// /**
// \brief STR Exclusive (32 bit)
// \details Executes a exclusive STR instruction for 32 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// \return 0 Function succeeded
// \return 1 Function failed
// */
// __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
// {
// uint32_t result;
// __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
// return(result);
// }
// /**
// \brief Remove the exclusive lock
// \details Removes the exclusive lock which is created by LDREX.
// */
// __STATIC_FORCEINLINE void __CLREX(void)
// {
// __ASM volatile ("clrex" ::: "memory");
// }
// #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
// (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
// #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
// /**
// \brief Signed Saturate
// \details Saturates a signed value.
// \param [in] ARG1 Value to be saturated
// \param [in] ARG2 Bit position to saturate to (1..32)
// \return Saturated value
// */
// #define __SSAT(ARG1, ARG2) \
// __extension__ \
// ({ \
// int32_t __RES, __ARG1 = (ARG1); \
// __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
// __RES; \
// })
// /**
// \brief Unsigned Saturate
// \details Saturates an unsigned value.
// \param [in] ARG1 Value to be saturated
// \param [in] ARG2 Bit position to saturate to (0..31)
// \return Saturated value
// */
// #define __USAT(ARG1, ARG2) \
// __extension__ \
// ({ \
// uint32_t __RES, __ARG1 = (ARG1); \
// __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
// __RES; \
// })
// /**
// \brief Rotate Right with Extend (32 bit)
// \details Moves each bit of a bitstring right by one bit.
// The carry input is shifted in at the left end of the bitstring.
// \param [in] value Value to rotate
// \return Rotated value
// */
// __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
// {
// uint32_t result;
// __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
// return(result);
// }
// /**
// \brief LDRT Unprivileged (8 bit)
// \details Executes a Unprivileged LDRT instruction for 8 bit value.
// \param [in] ptr Pointer to data
// \return value of type uint8_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
// {
// uint32_t result;
// #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
// __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
// #else
// /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
// accepted by assembler. So has to use following less efficient pattern.
// */
// __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
// #endif
// return ((uint8_t) result); /* Add explicit type cast here */
// }
// /**
// \brief LDRT Unprivileged (16 bit)
// \details Executes a Unprivileged LDRT instruction for 16 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint16_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
// {
// uint32_t result;
// #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
// __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
// #else
// /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
// accepted by assembler. So has to use following less efficient pattern.
// */
// __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
// #endif
// return ((uint16_t) result); /* Add explicit type cast here */
// }
// /**
// \brief LDRT Unprivileged (32 bit)
// \details Executes a Unprivileged LDRT instruction for 32 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint32_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
// return(result);
// }
// /**
// \brief STRT Unprivileged (8 bit)
// \details Executes a Unprivileged STRT instruction for 8 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// */
// __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
// {
// __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
// }
// /**
// \brief STRT Unprivileged (16 bit)
// \details Executes a Unprivileged STRT instruction for 16 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// */
// __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
// {
// __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
// }
// /**
// \brief STRT Unprivileged (32 bit)
// \details Executes a Unprivileged STRT instruction for 32 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// */
// __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
// {
// __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
// }
// #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
// /**
// \brief Signed Saturate
// \details Saturates a signed value.
// \param [in] value Value to be saturated
// \param [in] sat Bit position to saturate to (1..32)
// \return Saturated value
// */
// __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
// {
// if ((sat >= 1U) && (sat <= 32U))
// {
// const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
// const int32_t min = -1 - max ;
// if (val > max)
// {
// return max;
// }
// else if (val < min)
// {
// return min;
// }
// }
// return val;
// }
// /**
// \brief Unsigned Saturate
// \details Saturates an unsigned value.
// \param [in] value Value to be saturated
// \param [in] sat Bit position to saturate to (0..31)
// \return Saturated value
// */
// __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
// {
// if (sat <= 31U)
// {
// const uint32_t max = ((1U << sat) - 1U);
// if (val > (int32_t)max)
// {
// return max;
// }
// else if (val < 0)
// {
// return 0U;
// }
// }
// return (uint32_t)val;
// }
// #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
// #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
// (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
// /**
// \brief Load-Acquire (8 bit)
// \details Executes a LDAB instruction for 8 bit value.
// \param [in] ptr Pointer to data
// \return value of type uint8_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
// return ((uint8_t) result);
// }
// /**
// \brief Load-Acquire (16 bit)
// \details Executes a LDAH instruction for 16 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint16_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
// return ((uint16_t) result);
// }
// /**
// \brief Load-Acquire (32 bit)
// \details Executes a LDA instruction for 32 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint32_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
// return(result);
// }
// /**
// \brief Store-Release (8 bit)
// \details Executes a STLB instruction for 8 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// */
// __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
// {
// __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
// }
// /**
// \brief Store-Release (16 bit)
// \details Executes a STLH instruction for 16 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// */
// __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
// {
// __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
// }
// /**
// \brief Store-Release (32 bit)
// \details Executes a STL instruction for 32 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// */
// __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
// {
// __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
// }
// /**
// \brief Load-Acquire Exclusive (8 bit)
// \details Executes a LDAB exclusive instruction for 8 bit value.
// \param [in] ptr Pointer to data
// \return value of type uint8_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
// return ((uint8_t) result);
// }
// /**
// \brief Load-Acquire Exclusive (16 bit)
// \details Executes a LDAH exclusive instruction for 16 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint16_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
// return ((uint16_t) result);
// }
// /**
// \brief Load-Acquire Exclusive (32 bit)
// \details Executes a LDA exclusive instruction for 32 bit values.
// \param [in] ptr Pointer to data
// \return value of type uint32_t at (*ptr)
// */
// __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
// return(result);
// }
// /**
// \brief Store-Release Exclusive (8 bit)
// \details Executes a STLB exclusive instruction for 8 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// \return 0 Function succeeded
// \return 1 Function failed
// */
// __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
// return(result);
// }
// /**
// \brief Store-Release Exclusive (16 bit)
// \details Executes a STLH exclusive instruction for 16 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// \return 0 Function succeeded
// \return 1 Function failed
// */
// __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
// return(result);
// }
// /**
// \brief Store-Release Exclusive (32 bit)
// \details Executes a STL exclusive instruction for 32 bit values.
// \param [in] value Value to store
// \param [in] ptr Pointer to location
// \return 0 Function succeeded
// \return 1 Function failed
// */
// __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
// {
// uint32_t result;
// __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
// return(result);
// }
// #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
// (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
// /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
// /* ########################### Core Function Access ########################### */
// /** \ingroup CMSIS_Core_FunctionInterface
// \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
// @{
// */
// /**
// \brief Enable IRQ Interrupts
// \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
// Can only be executed in Privileged modes.
// */
// __STATIC_FORCEINLINE void __enable_irq(void)
// {
// __ASM volatile ("cpsie i" : : : "memory");
// }
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting special-purpose register PRIMASK.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_irq(void)
{
}
// /**
// \brief Get Control Register
// \details Returns the content of the Control Register.
// \return Control Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, control" : "=r" (result) );
// return(result);
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Control Register (non-secure)
// \details Returns the content of the non-secure Control Register when in secure mode.
// \return non-secure Control Register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
// return(result);
// }
// #endif
// /**
// \brief Set Control Register
// \details Writes the given value to the Control Register.
// \param [in] control Control Register value to set
// */
// __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
// {
// __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
// __ISB();
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Control Register (non-secure)
// \details Writes the given value to the non-secure Control Register when in secure state.
// \param [in] control Control Register value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
// {
// __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
// __ISB();
// }
// #endif
// /**
// \brief Get IPSR Register
// \details Returns the content of the IPSR Register.
// \return IPSR Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
// return(result);
// }
// /**
// \brief Get APSR Register
// \details Returns the content of the APSR Register.
// \return APSR Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_APSR(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, apsr" : "=r" (result) );
// return(result);
// }
// /**
// \brief Get xPSR Register
// \details Returns the content of the xPSR Register.
// \return xPSR Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
// return(result);
// }
// /**
// \brief Get Process Stack Pointer
// \details Returns the current value of the Process Stack Pointer (PSP).
// \return PSP Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_PSP(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, psp" : "=r" (result) );
// return(result);
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Process Stack Pointer (non-secure)
// \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
// \return PSP Register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
// return(result);
// }
// #endif
// /**
// \brief Set Process Stack Pointer
// \details Assigns the given value to the Process Stack Pointer (PSP).
// \param [in] topOfProcStack Process Stack Pointer value to set
// */
// __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
// {
// __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Process Stack Pointer (non-secure)
// \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
// \param [in] topOfProcStack Process Stack Pointer value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
// {
// __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
// }
// #endif
// /**
// \brief Get Main Stack Pointer
// \details Returns the current value of the Main Stack Pointer (MSP).
// \return MSP Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_MSP(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, msp" : "=r" (result) );
// return(result);
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Main Stack Pointer (non-secure)
// \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
// \return MSP Register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
// return(result);
// }
// #endif
// /**
// \brief Set Main Stack Pointer
// \details Assigns the given value to the Main Stack Pointer (MSP).
// \param [in] topOfMainStack Main Stack Pointer value to set
// */
// __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
// {
// __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Main Stack Pointer (non-secure)
// \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
// \param [in] topOfMainStack Main Stack Pointer value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
// {
// __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
// }
// #endif
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Stack Pointer (non-secure)
// \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
// \return SP Register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
// return(result);
// }
// /**
// \brief Set Stack Pointer (non-secure)
// \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
// \param [in] topOfStack Stack Pointer value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
// {
// __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
// }
// #endif
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
{
return 0;
}
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Priority Mask (non-secure)
// \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
// \return Priority Mask value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
// return(result);
// }
// #endif
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
{
}
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Priority Mask (non-secure)
// \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
// \param [in] priMask Priority Mask
// */
// __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
// {
// __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
// }
// #endif
// #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
// /**
// \brief Enable FIQ
// \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
// Can only be executed in Privileged modes.
// */
// __STATIC_FORCEINLINE void __enable_fault_irq(void)
// {
// __ASM volatile ("cpsie f" : : : "memory");
// }
// /**
// \brief Disable FIQ
// \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
// Can only be executed in Privileged modes.
// */
// __STATIC_FORCEINLINE void __disable_fault_irq(void)
// {
// __ASM volatile ("cpsid f" : : : "memory");
// }
// /**
// \brief Get Base Priority
// \details Returns the current value of the Base Priority register.
// \return Base Priority register value
// */
// __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, basepri" : "=r" (result) );
// return(result);
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Base Priority (non-secure)
// \details Returns the current value of the non-secure Base Priority register when in secure state.
// \return Base Priority register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
// return(result);
// }
// #endif
// /**
// \brief Set Base Priority
// \details Assigns the given value to the Base Priority register.
// \param [in] basePri Base Priority value to set
// */
// __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
// {
// __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Base Priority (non-secure)
// \details Assigns the given value to the non-secure Base Priority register when in secure state.
// \param [in] basePri Base Priority value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
// {
// __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
// }
// #endif
// /**
// \brief Set Base Priority with condition
// \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
// or the new value increases the BASEPRI priority level.
// \param [in] basePri Base Priority value to set
// */
// __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
// {
// __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
// }
// /**
// \brief Get Fault Mask
// \details Returns the current value of the Fault Mask register.
// \return Fault Mask register value
// */
// __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
// return(result);
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Fault Mask (non-secure)
// \details Returns the current value of the non-secure Fault Mask register when in secure state.
// \return Fault Mask register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
// {
// uint32_t result;
// __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
// return(result);
// }
// #endif
// /**
// \brief Set Fault Mask
// \details Assigns the given value to the Fault Mask register.
// \param [in] faultMask Fault Mask value to set
// */
// __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
// {
// __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Fault Mask (non-secure)
// \details Assigns the given value to the non-secure Fault Mask register when in secure state.
// \param [in] faultMask Fault Mask value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
// {
// __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
// }
// #endif
// #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
// (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
// (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
// #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
// (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
// /**
// \brief Get Process Stack Pointer Limit
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence zero is returned always in non-secure
// mode.
// \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
// \return PSPLIM Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
// (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// // without main extensions, the non-secure PSPLIM is RAZ/WI
// return 0U;
// #else
// uint32_t result;
// __ASM volatile ("MRS %0, psplim" : "=r" (result) );
// return result;
// #endif
// }
// #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Process Stack Pointer Limit (non-secure)
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence zero is returned always.
// \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
// \return PSPLIM Register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// // without main extensions, the non-secure PSPLIM is RAZ/WI
// return 0U;
// #else
// uint32_t result;
// __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
// return result;
// #endif
// }
// #endif
// /**
// \brief Set Process Stack Pointer Limit
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence the write is silently ignored in non-secure
// mode.
// \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
// \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
// */
// __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
// (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// // without main extensions, the non-secure PSPLIM is RAZ/WI
// (void)ProcStackPtrLimit;
// #else
// __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
// #endif
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Process Stack Pointer (non-secure)
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence the write is silently ignored.
// \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
// \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// // without main extensions, the non-secure PSPLIM is RAZ/WI
// (void)ProcStackPtrLimit;
// #else
// __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
// #endif
// }
// #endif
// /**
// \brief Get Main Stack Pointer Limit
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence zero is returned always in non-secure
// mode.
// \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
// \return MSPLIM Register value
// */
// __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
// (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// // without main extensions, the non-secure MSPLIM is RAZ/WI
// return 0U;
// #else
// uint32_t result;
// __ASM volatile ("MRS %0, msplim" : "=r" (result) );
// return result;
// #endif
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Get Main Stack Pointer Limit (non-secure)
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence zero is returned always.
// \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
// \return MSPLIM Register value
// */
// __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// // without main extensions, the non-secure MSPLIM is RAZ/WI
// return 0U;
// #else
// uint32_t result;
// __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
// return result;
// #endif
// }
// #endif
// /**
// \brief Set Main Stack Pointer Limit
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence the write is silently ignored in non-secure
// mode.
// \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
// \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
// */
// __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
// (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// // without main extensions, the non-secure MSPLIM is RAZ/WI
// (void)MainStackPtrLimit;
// #else
// __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
// #endif
// }
// #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
// /**
// \brief Set Main Stack Pointer Limit (non-secure)
// Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
// Stack Pointer Limit register hence the write is silently ignored.
// \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
// \param [in] MainStackPtrLimit Main Stack Pointer value to set
// */
// __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
// {
// #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// // without main extensions, the non-secure MSPLIM is RAZ/WI
// (void)MainStackPtrLimit;
// #else
// __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
// #endif
// }
// #endif
// #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
// (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
// /**
// \brief Get FPSCR
// \details Returns the current value of the Floating Point Status/Control register.
// \return Floating Point Status/Control register value
// */
// __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
// {
// #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
// (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
// #if __has_builtin(__builtin_arm_get_fpscr)
// // Re-enable using built-in when GCC has been fixed
// // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
// /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
// return __builtin_arm_get_fpscr();
// #else
// uint32_t result;
// __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
// return(result);
// #endif
// #else
// return(0U);
// #endif
// }
// /**
// \brief Set FPSCR
// \details Assigns the given value to the Floating Point Status/Control register.
// \param [in] fpscr Floating Point Status/Control value to set
// */
// __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
// {
// #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
// (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
// #if __has_builtin(__builtin_arm_set_fpscr)
// // Re-enable using built-in when GCC has been fixed
// // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
// /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
// __builtin_arm_set_fpscr(fpscr);
// #else
// __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
// #endif
// #else
// (void)fpscr;
// #endif
// }
// /*@} end of CMSIS_Core_RegAccFunctions */
// /* ################### Compiler specific Intrinsics ########################### */
// /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
// Access to dedicated SIMD instructions
// @{
// */
// #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
// __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
// {
// uint32_t result;
// __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
// return(result);
// }
// #define __SSAT16(ARG1, ARG2) \
// __extension__ \
// ({ \
// int32_t __RES, __ARG1 = (ARG1); \
// __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
// __RES; \
// })
// #define __USAT16(ARG1, ARG2) \
// __extension__ \
// ({ \
// uint32_t __RES, __ARG1 = (ARG1); \
// __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) : "cc" ); \
// __RES; \
// })
// __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
// {
// uint32_t result;
// __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
// {
// uint32_t result;
// __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SXTB16_RORn(uint32_t op1, uint32_t rotate)
// {
// uint32_t result;
// if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
// __ASM volatile ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) );
// } else {
// result = __SXTB16(__ROR(op1, rotate)) ;
// }
// return result;
// }
// __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SXTAB16_RORn(uint32_t op1, uint32_t op2, uint32_t rotate)
// {
// uint32_t result;
// if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
// __ASM volatile ("sxtab16 %0, %1, %2, ROR %3" : "=r" (result) : "r" (op1) , "r" (op2) , "i" (rotate));
// } else {
// result = __SXTAB16(op1, __ROR(op2, rotate));
// }
// return result;
// }
// __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
// {
// uint32_t result;
// __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
// {
// uint32_t result;
// __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
// return(result);
// }
// __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
// {
// union llreg_u{
// uint32_t w32[2];
// uint64_t w64;
// } llr;
// llr.w64 = acc;
// #ifndef __ARMEB__ /* Little endian */
// __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
// #else /* Big endian */
// __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
// #endif
// return(llr.w64);
// }
// __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
// {
// union llreg_u{
// uint32_t w32[2];
// uint64_t w64;
// } llr;
// llr.w64 = acc;
// #ifndef __ARMEB__ /* Little endian */
// __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
// #else /* Big endian */
// __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
// #endif
// return(llr.w64);
// }
// __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
// {
// uint32_t result;
// __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
// return(result);
// }
// __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
// {
// uint32_t result;
// __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
// return(result);
// }
// __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
// {
// union llreg_u{
// uint32_t w32[2];
// uint64_t w64;
// } llr;
// llr.w64 = acc;
// #ifndef __ARMEB__ /* Little endian */
// __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
// #else /* Big endian */
// __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
// #endif
// return(llr.w64);
// }
// __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
// {
// union llreg_u{
// uint32_t w32[2];
// uint64_t w64;
// } llr;
// llr.w64 = acc;
// #ifndef __ARMEB__ /* Little endian */
// __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
// #else /* Big endian */
// __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
// #endif
// return(llr.w64);
// }
// __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
// {
// uint32_t result;
// __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
// {
// int32_t result;
// __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
// {
// int32_t result;
// __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
// return(result);
// }
// #define __PKHBT(ARG1,ARG2,ARG3) \
// __extension__ \
// ({ \
// uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
// __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
// __RES; \
// })
// #define __PKHTB(ARG1,ARG2,ARG3) \
// __extension__ \
// ({ \
// uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
// if (ARG3 == 0) \
// __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
// else \
// __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
// __RES; \
// })
// __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
// {
// int32_t result;
// __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
// return(result);
// }
// #endif /* (__ARM_FEATURE_DSP == 1) */
// /*@} end of group CMSIS_SIMD_intrinsics */
#pragma GCC diagnostic pop
#endif /* __CMSIS_GCC_H */